

ASIA INTERNATIONAL MATHEMATICAL OLYMPIAD UNION

亞洲國際數學奧林匹克公開賽初賽

Asia International Mathematical Olympiad Open Trials

時限:90分鐘 Time allowed:90 minutes

試題 Question Paper

本試題不可取走。 THIS QUESTION PAPER CANNOT BE TAKEN AWAY.

未得監考官同意,切勿翻閱試題,否則參賽者將有可能被取消資格。 DO NOT turn over this Question Paper without approval of the examiner. Otherwise, contestant may be DISQUALIFIED. Section A – each question carries 4 marks

- 1) If x is a 2-digit positive integer and $x^2 3y^2 = 1$. Find the largest possible integral value of y.
- 2) Given [x] represent the largest integer less than x. Find the value of

7		14		21		8064	
2016	+	2016	+	2016	$+\cdots+$	2016	

- 3) Express $4\sin 75^\circ 2\cos 45^\circ$ in surd form.
- 4) If the determinant $\begin{vmatrix} 4x & 2x \\ 6 & x \end{vmatrix}$ has a value equal to -9, find the value of x.
- 5) In the figure below, *M*, *N*, and *E* are the mid-points of *BC*, *MC*, and *AC* respectively. Find *BG* : *GH* : *HE* .

- 6) Find the least possible positive integral solution x to the congruence equation $x \equiv 4 \times 5 \times 6 \times ... 2014 \times 2015 \times 2016 \pmod{2017}$.
- 7) If x, y are positive integers and follows the congruence equation $x^2 y! \equiv 3 \pmod{10}$. Find the sum of all possible value(s) of y.

8) If
$$\omega = -\frac{1}{2} + i$$
, find the value of $\omega^4 \left(\omega + 1 + \frac{1}{\omega} \right)^4$.

~ End of section A ~

(C) 2019 Hong Kong Mathematical Olympiad Association 香港數學奧林匹克協會 (HKMO) http://www.hkmo.com.hk All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic mechanical, photocopying, recording or otherwise, without the prior permission of Hong Kong Mathematical Olympiad Association.

Section B – each question carries 5 marks

- 9) Given [x] represent the largest integer less than x, find the product of all solutions to 7x-3[x]=4.
- 10) In a rectangular coordinate system, there is a circle $x^2 + y^2 + 2x 12y 4 = 0$ and a straight line. If the straight line passes through A(5,2) and intersects the circle and point *B* and *C*. Find the value of $AB \times AC$.
- 11) Given x is a 3-digit positive integer and x follows the congruence equation $x^2 3x 28 \equiv 0 \pmod{15}$, find the largest possible value of x.

12) Find the value of
$$\sum_{k=1}^{100} \left((-1)^{k+1} \times \frac{4k}{(2k)^2 - 1} \right).$$

13) It is known that x, y, z satisfy
$$\begin{cases} x+2y+3z = 14\\ 3x-2y+z = 2\\ 8x+5y-6z = 0 \end{cases}$$
, find xyz.

- 14) It is known that (a, b) is the image when (3, 5) is reflected along 3x+4y+1=0. Find the value of a+b.
- 15) If $a_n = 5a_{n-1} 6a_{n-2} + 2 \times 3^{n-1}$, $a_1 = 11$ and $a_2 = 49$. Find the value of a_{10} .

16) If
$$f(x) = \frac{x}{\sqrt[3]{x^3 + 1}}$$
, find the value of $f^{91}(2)$.

~ End of section B ~

Section C – each question carries 7 marks

17) If p=1-ai $(a \in \mathbb{R})$, q=3-i, and p and q are the solutions to the quadratic equation $z^2-4z+b=0$ $(b \in \mathbb{R})$. Find the value of ab.

18) Let
$$f(n) = 5n^4 - 10n^3 + 10n^2 - 5n + 1$$
, find the last two digits of $\sum_{i=1}^{2016} f(i)$.

- 19) If $a_n = 7a_{n-1} 10a_{n-2}$, $a_1 = 16$, $a_2 = 62$. Find the remainder when a_{2016} is divided by 7.
- 20) In the figure below, AG:GN:NC = BH:HM:MC = 5:3:2. If the area of $\triangle ABC$ is 2016. Find the area of quadrilateral *DEJK*.

~ End of Paper ~