亞洲國際數學奧林匹克聯合會

Asia International Mathematical Olympiad Union

亞洲國際數學奧林匹克公開賽初賽

Asia International Mathematical Olympiad Open Trials

中三組 Grade 9

時限：70分鐘
Time allowed： 70 minutes

試題
 Question Paper

本試題不可取走。
THIS QUESTION PAPER CANNOT BE TAKEN AWAY．
未得監考官同意，切勿翻閱試題，否則參賽者將有可能被取消資格 DO NOT turn over this Question Paper without approval of the examiner．

Otherwise，contestant may be DISQUALIFIED．

Section A－each question carries 4 marks
1）If $x^{2}+9 x+20=0$ ，find the largest real possible value of x ．

2）If $4 x^{2} \leq 8 x-4$ ，find the number of integral possible value（s）of x ．

3）Find the remainder of $2015^{2017} \div 2016$ ．

4）If a straight line L passes through $A(-3,9)$ ，and the slope of L is 4 ．Find the y－intercept of L ．

5）If $\sin A+\cos A=\frac{1}{3}$ ，find the value of $\sin A \cos A$ ．

6）In the figure below，a circle is inscribed in $\triangle A B C$ ，if $A B=30, A C=40$ and $\angle B A C=90^{\circ}$ ，find the radius of the inscribed circle．

7）Evaluate $\sum_{k=0}^{6}\left(k C_{k}^{6}\right)$ ．

8）Three fair six－sided dices are thrown，find the probability that the sum of the outcomes is even． （Show your answer in fraction）
～End of section A～

All answers should be written on the ANSWER SHEET．
Section B－each question carries 5 marks

9）If quadratic equation $9 x^{2}+6 x+(k-7)=0$ has real roots，find the largest possible value of k ．

10）It is known that $|x|$ is the absolute value of x ．If $x^{2}-3|x|+2 \leq 0$ ，find the smallest possible value of x ．

11）The three vertices of a triangle $\triangle A B C$ are respectively $A(-2,1), B(3,-1)$ and $C(5,1)$ ．Find equation of the median of the triangle $\triangle A B C$ passing through A ．Show your answer in general form．

12）In $\triangle A B C, B C=12, A C=11$ and $A B=17$ ．Find the value of $\cos \angle A$ ．（ Show your answer as fraction）．

13）In the figure below，$A F D$ and $B F E$ are both straight lines．If $\angle B C A=25^{\circ}, \angle B A D=110^{\circ}$ and $\angle D E F=130^{\circ}$ find the value of $\angle A C E$ ．

14）There are m red marbles and n white marbles in a hat．If three marbles are randomly drawn from it and the probability of drawing three white marbles is $\frac{1}{28}$ ，find the least possible value of n ．

15）Find the largest possible value of $\sqrt{x-1008}+\sqrt{3024-x}$ for any real values of x ．Show your answer in simplest surd．

16）If all of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are not greater than 5 ，find the number of solution sets to the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=15$.

17）If x follows the congruence relations below，find the least possible positive integral value of x ．

$$
\left\{\begin{array}{l}
6 x \equiv 5(\bmod 7) \\
5 x \equiv 3(\bmod 11) \\
2 x \equiv 9(\bmod 13)
\end{array}\right.
$$

18）If $x<1$ and $\left(\log _{7} x\right)^{2}-\log _{49} x^{8}=5$ ，find the value of x ．

19）In the figure below，$\triangle A B C$ is an acute－angle triangle and D is the mid－point of $B C$ ．A circumcircle of $\triangle A B C$ is constructed and tangents of the circle $C E$ and $B E$ is drawn，both lines meeting at E ．If $\angle C A D=30^{\circ}$ ，find the value of $2 \cos \angle B A E$ and express your answer in surd form．

20）$f(x)=a x^{3}+b x^{2}+c x+d$ is a polynomial of highest degree of x not larger than three．If $f(1)=-1, f(2)=5, f(3)=29, f(4)=83$ ，evaluate $a^{4}+b^{3}+c^{2}+d$.

